
The Blocks World

May 16, 2008

Contents

1 The blocks-world package 2

1.1 A picture of the world . 2

1.2 Example . 2

1.3 The different kinds of blocks . 3

1.4 Block properties . 6

1.5 Concrete block classes . 9

1.6 The hand . 12

1.7 Other functions . 15

2 The blocks-world-goals package 21

2.1 Lots of undocumented functions 21

2.2 Other functions . 21

2.3 Other macros . 22

2.4 Other classes . 23

2.5 Other variables . 23

1

Chapter 1

The blocks-world package

This package contains the source code of chapter 21, ”The Blocks World with
Classes and Methods” from Lisp (3rd edition) by Winston and Horn.

1.1 A picture of the world

The block objects represent a world that ”looks” like this:

/----\ ^ /---------\ ^
| b4 | / \ | | / \
____/ /_w7_\ | | / \
/----\ /----\ | | / \ /--------\ /^\
| b1 | | b2 | | b3 | / \ | b6 | (l8)
____/ ____/ _________/ /_w5__\ ________/ \./
+---+
| |
+---+

1.2 Example

In the initial configuration, where all blocks have been placed directly on the
table (not shown), put-on will move the objects like this:

BLOCKS-WORLD> (put-on b1 b2)
Move hand to pick up B1 at location (1 2).
Grasp B1.
Removing support relations between B1 and TABLE.
Move B1 to top of B2 at location (2 2).
Adding support relations between B1 and B2.
Ungrasp B1.
T

2

http://www.amazon.com/Lisp-3rd-Patrick-Winston/dp/0201083191

1.3 The different kinds of blocks

In this section:

• basic-block

• load-bearing-block

• movable-block

Movable blocks than can be moved onto load supporting blocks. Using multiple
inheritance, there are also blocks that can do both.

[Class]basic-block

Superclasses

common-lisp:standard-object, sb-pcl::slot-object, common-lisp:t

Documented Subclasses

load-bearing-block , movable-block

Direct Slots

height —

name —

supported-by —

width —

position —

Details

The superclass of all objects in the Blocks World (not including the hand).

Subclasses of basic-block characterize different kinds of objects, and have
different properties.

They all have a name, given as block-name and in the examples from the book,
a global variable of that name is used to refer to them.

Since this chapter is an explanation of CLOS, no specific constructor function
is defined, and users may call make-instance directly.

Slot Access Functions

• block-name

3

• block-width

• block-height

• block-position

• block-supported-by

[Class]load-bearing-block

Superclasses

basic-block , common-lisp:standard-object, sb-pcl::slot-object, common-lisp:t

Documented Subclasses

brick , table

Direct Slots

support-for —

Details

The superclass of objects in the Blocks World that other blocks can be placed
onto.

This class is mixed into most blocks, except for the wedge and the ball .

Slot Access Functions

• block-support-for

Inherited Slot Access Functions

• block-name

• block-width

• block-height

• block-position

• block-supported-by

See also

4

• wedge

• ball

[Class]movable-block

Superclasses

basic-block , common-lisp:standard-object, sb-pcl::slot-object, common-lisp:t

Documented Subclasses

ball , brick , wedge

Direct Slots

None

Details

The superclass of objects in the Blocks World that can be moved by the hand.

This class is mixed into all blocks except for the table .

Inherited Slot Access Functions

• block-name

• block-width

• block-height

• block-position

• block-supported-by

See also

• table

5

1.4 Block properties

In this section:

• block-name

• block-position

• block-width

• block-height

• block-supported-by

• block-support-for

Slot readers:

[Function]block-name instance

Arguments

instance — a basic-block

Return Values

a symbol

Details

Returns the block’s name, a symbol.

In the examples from the book, a global variable of this name is used to refer
to instance.

See also

• basic-block

[Function]block-position instance

Arguments

instance — a basic-block

6

Return Values

a list of two integers

Details

Returns the block’s position.

The position of a block is specified as a list of its x and y coordinates, where
the first axis runs along the table, and the second axis points upwards towards
the hand.

Together with the block’s width and height, the position determines which parts
of the world this block occupies. No other objects can be placed to an overlap-
ping position.

See also

• basic-block

• block-height

• block-width

• hand-position

[Function]block-width instance

Arguments

instance — a basic-block

Return Values

an integer

Details

Returns the block’s width.

The size of a block is specified as width and height, and determines which
parts of the world this block occupies. No other objects can be placed to an
overlapping position.

See also

• basic-block

• block-position

7

• block-height

[Function]block-height instance

Arguments

instance — a basic-block

Return Values

an integer

Details

Returns the block’s height.

The size of a block is specified as width and height, and determines which
parts of the world this block occupies. No other objects can be placed to an
overlapping position.

See also

• basic-block

• block-position

• block-width

[Function]block-supported-by instance

Arguments

instance — a basic-block

Return Values

nil, or a block

Details

Returns the block this instance has been placed onto.

All blocks except for the table sit on top of another block, which supports them.

See also

8

• basic-block

• block-support-for

[Function]block-support-for instance

Arguments

instance — a load-bearing-block

Return Values

a list of blocks

Details

Returns the blocks that have been placed onto this instance.

See also

• load-bearing-block

• block-supported-by

1.5 Concrete block classes

In this section:

• table

• brick

• wedge

• ball

These are the blocks found in our world:

[Class]table

Superclasses

9

load-bearing-block , basic-block , common-lisp:standard-object, sb-pcl::slot-
object, common-lisp:t

Documented Subclasses

None

Direct Slots

None

Details

The table supporting the rest of the world.

The entire rest of the world sits on this table. The table itself cannot be moved.

For each world, this class is meant to be a singleton.

Inherited Slot Access Functions

• block-support-for

• block-name

• block-width

• block-height

• block-position

• block-supported-by

[Class]brick

Superclasses

movable-block , load-bearing-block , basic-block , common-lisp:standard-
object, sb-pcl::slot-object, common-lisp:t

Documented Subclasses

None

Direct Slots

None

Details

10

A useful movable building block with a flat top.

Because this block has a flat top, it supports other blocks.

Inherited Slot Access Functions

• block-support-for

• block-name

• block-width

• block-height

• block-position

• block-supported-by

[Class]wedge

Superclasses

movable-block , basic-block , common-lisp:standard-object, sb-pcl::slot-
object, common-lisp:t

Documented Subclasses

None

Direct Slots

None

Details

An interesting movable building block.

Because this block doesn’t have a flat top, it cannot support other blocks.

Inherited Slot Access Functions

• block-name

• block-width

• block-height

• block-position

• block-supported-by

11

[Class]ball

Superclasses

movable-block , basic-block , common-lisp:standard-object, sb-pcl::slot-
object, common-lisp:t

Documented Subclasses

None

Direct Slots

None

Details

The block is a sphere.

Because this block doesn’t have a flat top, it cannot support other blocks.

Inherited Slot Access Functions

• block-name

• block-width

• block-height

• block-position

• block-supported-by

1.6 The hand

In this section:

• hand

• hand-name

• hand-position

• hand-grasping

12

The hand is movable. It can hold at most one block.

[Class]hand

Superclasses

common-lisp:standard-object, sb-pcl::slot-object, common-lisp:t

Documented Subclasses

None

Direct Slots

grasping —

name —

position —

Details

The hand that moves the world.

This hand can be used to move every movable-block .

Slot Access Functions

• hand-name

• hand-position

• hand-grasping

See also

• movable-block

[Function]hand-name instance

Arguments

instance — a hand

13

Return Values

a symbol

Details

Returns the hand’s name, a symbol.

The hand is always called blocks-world::*hand*.

See also

• hand

[Function]hand-position instance

Arguments

instance — a hand

Return Values

a list of two integers

Details

Returns the hand’s position.

The position of a hand is specified as a list of its x and y coordinates, where the
first axis runs along the table, and the second axis points upwards towards the
hand.

See also

• hand

• block-position

[Function]hand-grasping instance

Arguments

instance — a hand

14

Return Values

a movable-block , or nil

Details

Returns the block the hand is currently holding.

See also

• hand

• movable-block

1.7 Other functions

[Function]add-support object support

Arguments

object — a movable-block

support — a basic-block

Return Values

a boolean

Details

Note that object has been put onto support.

This function maintains the slots block-supported-by and block-support-for
.

See also

• movable-block

• basic-block

• block-supported-by

• block-support-for

15

[Function]clear-top support

Arguments

support — a load-bearing-block

Return Values

nil

Details

Make space on top of this object.

Removes all blocks support is supporting.

See also

• load-bearing-block

• get-rid-of

• block-support-for

[Function]get-rid-of object

Arguments

object — a movable-block

Return Values

unspecified

Details

Moves object onto the table .

See also

• movable-block

• table

16

• put-on

[Function]get-space object support

Arguments

object — a movable-block

support — a basic-block

Return Values

undocumented, but non-nil

Details

Find or make space on support for object.

See also

• movable-block

• basic-block

• find-space

• make-space

[Function]grasp object

Arguments

object — a movable-block

Return Values

t

Details

Grasps the block using the hand.

Makes sure to ungrasp the block currently grasped by the hand , if any.

See also

17

• movable-block

• hand

• ungrasp

[Function]make-space object support

Arguments

object — a movable-block

support — a basic-block

Return Values

undocumented, but non-nil

Details

Make space on support for object.

Takes all necessary actions to make space available.

See also

• movable-block

• basic-block

• get-space

• find-space

[Function]move object support

Arguments

object — a movable-block

support — a load-bearing-block

Return Values

a boolean

18

Details

Move block object onto block support.

This is a helper function for put-on .

See also

• movable-block

• load-bearing-block

• put-on

[Function]put-on object support

Arguments

object — a movable-block

support — a basic-block

Return Values

a boolean

Details

Move block object onto block support.

Prints the steps taken and returns T or prints an error message and returns nil.

See also

• movable-block

• basic-block

• get-space

• grasp

• move

• ungrasp

19

[Function]remove-support object

Arguments

object — a movable-block

Return Values

a boolean

Details

Note that object has been taken from support.

This function maintains the slots block-supported-by and block-support-for
.

See also

• movable-block

• block-supported-by

• block-support-for

[Function]ungrasp object

Arguments

object — a movable-block

Return Values

a boolean

Details

Ungrasps the block if hand is holding it.

Returns t if successful, or nil if the hand didn’t hold this block.

See also

• movable-block

• hand

• grasp

20

Chapter 2

The blocks-world-goals
package

This package contains the source code of chapter 22, ”Answering Questions
about Goals” from Lisp (3rd edition) by Winston and Horn.

2.1 Lots of undocumented functions

I was too lazy to document this package, which is why all its functions have a
big fat ”undocumented” warning.

This package’s page also looks rather empty and sad.

2.2 Other functions

[Function]attach-action node action

No documentation string. Possibly unimplemented or incomplete.

[Function]attach-parent child parent

No documentation string. Possibly unimplemented or incomplete.

21

http://www.amazon.com/Lisp-3rd-Patrick-Winston/dp/0201083191

[Function]find-action given-form &optional (node *current-node*)

No documentation string. Possibly unimplemented or incomplete.

[Function]node-action object

No documentation string. Possibly unimplemented or incomplete.

[Function]node-children object

No documentation string. Possibly unimplemented or incomplete.

[Function]node-parent object

No documentation string. Possibly unimplemented or incomplete.

[Function]show-simple-tree node &optional (indentation 0)

No documentation string. Possibly unimplemented or incomplete.

2.3 Other macros

[Macro]define-history-method name parameters &rest body

No documentation string. Possibly unimplemented or incomplete.

[Macro]tell-why name &rest parameters

No documentation string. Possibly unimplemented or incomplete.

22

2.4 Other classes

[Class]node

Superclasses

common-lisp:standard-object, sb-pcl::slot-object, common-lisp:t

Documented Subclasses

None

Direct Slots

action —

children —

parent —

No documentation string. Possibly unimplemented or incomplete.

2.5 Other variables

[Variable]*current-node*

No documentation string. Possibly unimplemented or incomplete.

23

Index

current-node *current-node* vari-
able, 23

add-support add-support function, 15
attach-action attach-action function,

21
attach-parent attach-parent function,

21
ball ball class, 12
basic-block basic-block class, 3
block-height block-height function, 8
block-name block-name function, 6
block-position block-position function,

6
block-support-for block-support-for

function, 9
block-supported-by block-supported-by

function, 8
block-width block-width function, 7
brick brick class, 10
clear-top clear-top function, 16
define-history-method define-history-method

macro, 22
find-action find-action function, 22
get-rid-of get-rid-of function, 16
get-space get-space function, 17
grasp grasp function, 17
hand hand class, 13
hand-grasping hand-grasping function,

14
hand-name hand-name function, 13
hand-position hand-position function,

14
load-bearing-block load-bearing-block

class, 4
make-space make-space function, 18
movable-block movable-block class, 5
move move function, 18
node node class, 23
node-action node-action function, 22
node-children node-children function,

22

node-parent node-parent function, 22
put-on put-on function, 19
remove-support remove-support func-

tion, 20
show-simple-tree show-simple-tree func-

tion, 22
table table class, 9
tell-why tell-why macro, 22
ungrasp ungrasp function, 20
wedge wedge class, 11

24

	The blocks-world package
	A picture of the world
	Example
	The different kinds of blocks
	Block properties
	Concrete block classes
	The hand
	Other functions

	The blocks-world-goals package
	Lots of undocumented functions
	Other functions
	Other macros
	Other classes
	Other variables

